

Effect of niobium on microstructural and mechanical properties of the heat affected zones of welded E36 steel

Jun Fu¹, Qing Tao^{1, 2}, Hongbiao Dong¹

jf320@Leicester.ac.uk

^{1.} NISCO UK Research Centre, School of Engineering, University of Leicester, UK

² School of Materials and Physics, China University of Mining and Technology, China

22 February 2022

5th Postgraduate Research Symposium on Ferrous Metallurgy, London, 22nd February 2022 ¹

Outline

1 Background

- 2 Microstructure and mechanical properties of coarse grain zone
- 3 Simulation of microstructure evolution based on SHCCT experiments
- 4 Summarize & Future work

Thermal history & phase transformation during high heat input welding (HHIW)

- Phase fraction & grain size determine the properties of the HAZ
- Coarse grain zone prone to brittle fracture after HHIW

Kitani, Y., et al. Welding in the World. 2007.

Effect of niobium on size & toughness of heat-affected zone

- Increases of Nb leading to finer prior austenite grain size
- Effect of Nb on fracture transition are different under different heat input
- Effect of niobium at heat input up to 250kJ/cm has not been mentioned

Batte, A. Proc. Int. Symp. on 'Niobium'. 2001.

Outline

1 Background

2 Microstructure and mechanical properties of coarse grain zone

- 3 Simulation of microstructure evolution based on SHCCT experiments
- 4 Summarize & Future work

		Chemi	cal compos	sition of ba	Parameter of coarse zone simulation					
Steel grade	С	Mn	Si	Nb	Ti	Ceq	Steel grade	Peak Temp (°C)	$\Delta t_{8/5}$ (s)	Heat input (kJ/cm)
E36	0.081	1.51	0.21	/	0.016	0.34	E36& E36Nb	1350	17.8 71.2 160.1	50 100 150
E36-Nb	0.080	1.53	0.25	0.012	0.016	0.34			284.7 444.8	200 250
Strength of base steel(MPa)	423 420 Yield stren	05 gth	5. 5. 5.	E36 E36Nb 24 08 ength	1400 1200 000 1000 000 1000 1000 1000 10		Therr	mal cycle		50kJ/cm 50kJ/cm 50kJ/cm 50kJ/cm

Coarse grain zone (HAZ) thermal experiments by Gleeble

Mechanical properties of Coarse grain zone(HAZ) of E36 and E36Nb(experiments)

OM analysis of Coarse zone(HAZ) for E36 and E36Nb

E36-100: Bainite, Granular bainite & Acicular ferrite & Proeutectoid ferrite

E36-250: Proeutectoid ferrite, Acicular ferrite & Pearlite

E36-250: Bainite & proeutectoid ferrite

100kJ/cm E36Nb

250kJ/cm E36Nb

EBSD analysis of Coarse zone(HAZ)for E36 and E36Nb

Average grain size of E36Nb is finer than E36 with two heat input

9

Average grain size coarse with higher heat input between 100kJ/cm and 250kJ/cm
Percentage of small angle grain(Misorientation<15) of E36-100 is 66%, E36Nb-100 is 74%

OM analysis of Coarse zone(HAZ) by horizontal position of sample

OM analysis of Coarse zone(HAZ) simulation by horizontal position of sample

Outline

- 1 Background
- 2 Microstructure and mechanical properties of coarse grain zone

3 Simulation of microstructure evolution based on SHCCT experiments

4 Summarize & Future work

Simulation (HAZ) continuous cooling transformation (SHCCT) curve of E36

Simulation (HAZ) continuous cooling transformation (SHCCT) curve of E36Nb

Continuous cooling transformation (SHCCT) curves of E36 & E36Nb

- Niobium addition reduces the phase transition temperature (including the start transition temperature and end temperature)
- > Niobium addition expands the bainite transformation area
- Cooling rate of acicular ferrite transformation from 2°C/s 20°C/s for E36, 1°C/s - 2°C/s for E36Nb, Niobium addition reduced cooling rate range of acicular ferrite transformation

Leblond-Devaux equation and Koistinen-Marburger equation

Leblond-Devaux equation:

$$A_{s \to d} = K_{s \to d} \xi^{s} - L_{s \to d} \xi$$

 ζ^{s} The ratio of consumption phase ζ^{d} The ratio of target phase $K_{s \rightarrow d}$, $L_{s \rightarrow d}$ Temperature dependent function, $A_{s \rightarrow d}$ Phase evolution rate

Temperature dependent functions of austenite decomposition

	_									
	-	Temperatu re/°C	Austenite to ferrite		Austenite to bainite		Austenite to			
~							pea	rlite		
	Apply for austenite to ferrite,		<i>K</i> (1/s)	L(1/s)	<i>K</i> (1/s)	<i>L</i> (1/s)	<i>K</i> (1/s)	<i>L</i> (1/s)		
pearlite	pearlite and bainite transformation	0	0		0	0	0	0		
\succ	Simulate the SH-CCT diagrams by	300		0				0		
COMSC	COMSOL	520	0		0.05		0			
 Adjust the compariso 		540			0.005					
	Adjust the $K_{s \rightarrow d}$ and $L_{s \rightarrow d}$ by	560			0.005					
	comparison	580				0.002				
K and L ir was obtain correspondence	K and L in Leblond-Devaux equation	600	0		0.005		0			
		620				0.0002				
	was obtained according to	640	0.0012				0.0004			
	corresponding phase transformation	650		0.0002				0.0002		
	which described as interpolation	710	0.00017							
	functions	800	0.002				0.0002			
		1000		0.002			0	0.002		

Phase transformation of selected points during welding

- The thermal cycle and microstructural evolution curve in point A are achieved.
- The phase fraction of the microstructure of experiment and simulation are in a good agreement.

3-D cloud picture of microstructural evolution for Gleeble experiments

> Based on the validated Leblond-Devaux equation, the microstructural evolution are achieved

> The fraction of ferrite, bainite and pearlite are showing in the 3D diagram

Phase transformation of selected points during welding

> The phase fraction of the microstructure of experiment and simulation are in a good agreement.

Outline

1 Background

2 Microstructure and mechanical properties of coarse grain zone

3 Numerical simulation based on SHCCT experiments

4 Summarize & Future work

Summary & Future work

- Thermal profile, and phase fraction of ferrite, bainite and pearlite transformation during the simulated welding process can be predicted by the model.
- Impact toughness of coarse grain zone of E36Nb is better than E36 with heat input 50kJ/cm, 100kJ/cm, 150kJ/cm, 200kJ/cm and 250kJ/cm.
- ➤ Addition of Nb-0.12%:
 - Expands the bainite transformation range of SHCCT
 - Reduces the content of proeutectoid ferrite and acicular ferrite
 - Increases the amount of granular bainite
- ➤ Leblond-Devaux parameters of $K_{s \rightarrow d}$ and $L_{s \rightarrow d}$ have been evaluated and simulated. SH-CCT diagram shows a good agreement with the experimental SH-CCT diagram.
- > Develop the martensitic transformation model by Koistinen-Marburger equation.

Thanks for your attention!